If it's not what You are looking for type in the equation solver your own equation and let us solve it.
.6x^2-30x+187.5=0
a = .6; b = -30; c = +187.5;
Δ = b2-4ac
Δ = -302-4·.6·187.5
Δ = 450
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{450}=\sqrt{225*2}=\sqrt{225}*\sqrt{2}=15\sqrt{2}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-30)-15\sqrt{2}}{2*.6}=\frac{30-15\sqrt{2}}{1.2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-30)+15\sqrt{2}}{2*.6}=\frac{30+15\sqrt{2}}{1.2} $
| 5x-4(x+20)=30+2x-(-6) | | Y=28X=7y=52 | | s-18=s-57 | | 15-2(7-x=7 | | 4x+-10+2x+60=180 | | 5(4x+9)=-27+52 | | 6m-9-3=24+18m | | 5(x=6)=55 | | 28+3x=-4x | | 23.5=2πr | | 6t^2-30t+187.5=0 | | 36x+x=0 | | -(8+6m)=4-8m | | -90=-5(3v-3) | | 2(4p-5)-(p-4)=3(p+2)+4(p-3) | | 36-m=20 | | 2(4p-5)-(p-4)=3(p+2)+4(p-30 | | 7y-58=y | | 3x+5-2x+3=13 | | 486=9x | | 1/3x-2=x-8 | | 3−x=19+x | | -4+5x|4x-3|=36 | | 1/5x=56 | | X/2+0.04x=255 | | 6xx=0.9 | | 7x+12=10x-12 | | 10x5=5x | | 1/2j+6=3-2j | | X=9/2y-5 | | 5x+5+2x-3=30 | | (2x+30)+(2x+20)+50=x |